相關(guān)文章
Related articles產(chǎn)品中心/ PRODUCTS
簡(jiǎn)要描述:腦室微量給藥導(dǎo)管可固定在大鼠、小鼠的顱骨上,埋入腦部適當(dāng)?shù)纳疃?,配合相?yīng)的PE給藥導(dǎo)管、微量注射器或者使用,實(shí)現(xiàn)對(duì)大鼠、小鼠顱內(nèi)的微量給藥
聯(lián)系電話(huà):021-54377179
腦室微量給藥導(dǎo)管可固定在大鼠、小鼠的顱骨上,埋入腦部適當(dāng)?shù)纳疃?,配合相?yīng)的PE給藥導(dǎo)管、微量注射器或者使用,實(shí)現(xiàn)對(duì)大鼠、小鼠顱內(nèi)的微量給藥。
單套管顱內(nèi)給藥
整個(gè)套管由基座、注射內(nèi)管、導(dǎo)管帽、鎖緊螺帽組成:
單套管顱內(nèi)給藥植入腦室的示意圖:
給藥套管的詳細(xì)構(gòu)造及主要尺寸:
(長(zhǎng)度單位:mm)
訂購(gòu)指南,需要確定以下幾個(gè)尺寸:
D1:導(dǎo)管外徑的尺寸;
L1:下探到腦室套管的長(zhǎng)度(含顱骨和腦室)
L3:注射內(nèi)管探出基座套管的長(zhǎng)度;
L4:導(dǎo)管芯(也就是堵頭)探出基座套管的長(zhǎng)度;
單套管的型號(hào),各個(gè)組成配件的貨號(hào)和尺寸:
雙套管顱內(nèi)給藥
適用于兩種不同或相同的藥物注射在兩個(gè)不同的位置;
雙套管的主要組成:
雙套管顱內(nèi)給藥植入腦室的示意圖:
雙套管的詳細(xì)構(gòu)造及主要尺寸:
訂購(gòu)指南,需要確定以下幾個(gè)尺寸:
D1:導(dǎo)管外徑的尺寸;
L1:下探到腦室套管的長(zhǎng)度(含顱骨和腦室)
P :兩根導(dǎo)管的間距
L3:注射內(nèi)管探出基座套管的長(zhǎng)度;
L4:導(dǎo)管芯(也就是堵頭)探出基座套管的長(zhǎng)度;
雙套管的型號(hào),各個(gè)組成配件的貨號(hào)和尺寸:
新生鼠適用型號(hào):
小鼠、大鼠適用型:
大鼠適用型:
顱內(nèi)微量注射實(shí)驗(yàn),還需要用到以下相關(guān)的設(shè)備和工具:
腦立體定位儀、套管夾持器、、微量進(jìn)樣器、PE給藥導(dǎo)管、固定螺絲等
腦立體定位儀,可根據(jù)需求有多種型號(hào)可供選擇:大鼠適配型、小鼠適配型、單臂、雙臂、數(shù)顯式、電動(dòng)式
套管夾持器
微量進(jìn)樣器
PE給藥導(dǎo)管
牙科水泥
固定螺絲
小動(dòng)物
參考文獻(xiàn):
[1] Wahis J, Baudon A, Althammer F, et al. Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents[J]. Nature neuroscience, 2021, 24(4): 529-541.
[2] Zhu Z, Ng D W H, Park H S, et al. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies[J]. Nature Reviews Materials, 2021, 6(1): 27-47.
[3] Wang L, Gillis-Smith S, Peng Y, et al. The coding of valence and identity in the mammalian taste system[J]. Nature, 2018, 558(7708): 127-131.
[4] Terburg D, Scheggia D, Del Rio R T, et al. The basolateral amygdala is essential for rapid escape: a human and rodent study[J]. Cell, 2018, 175(3): 723-735. e16.
[5] Peng Y, Gillis-Smith S, Jin H, et al. Sweet and bitter taste in the brain of awake behaving animals[J]. Nature, 2015, 527(7579): 512-515.
[6] Tye K M, Mirzabekov J J, Warden M R, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013, 493(7433): 537-541.
[7] Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, et al. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs[J]. Neuron, 2012, 76(4): 804-812.
[8] Pascoli V, Turiault M, Lüscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour[J]. Nature, 2012, 481(7379): 71-75.
[9] Lemos J C, Wanat M J, Smith J S, et al. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive[J]. Nature, 2012, 490(7420): 402-406.
[10] Goshen I, Brodsky M, Prakash R, et al. Dynamics of retrieval strategies for remote memories[J]. Cell, 2011, 147(3): 678-689.
[11] Aponte Y, Atasoy D, Sternson S M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training[J]. Nature neuroscience, 2011, 14(3): 351-355.
[12] Kravitz A V, Freeze B S, Parker P R L, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306): 622-626.
[13] Amat J, Baratta M V, Paul E, et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus[J]. Nature neuroscience, 2005, 8(3): 365-371.
[14] Jasmin L, Rabkin S D, Granato A, et al. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex[J]. Nature, 2003, 424(6946): 316-320.
[15] Sunter D, Hewson A K, Lynam S, et al. Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat[J]. Neuroscience letters, 2001, 313(3): 145-148.
:,
:3007536035
yuyanbio
Mail:yuyanbio